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T
he polarization of a plane wave is
rotated when light passes through a
transparent media in the presence of

a perpendicular static magnetic field B. This
phenomenon, known as Faraday rotation,
has important applications in optical diodes,1

sensing and magnetic microscopy,2 etc.

Usually, Faraday rotation requires the pres-
ence of ferromagnets, as typical Faraday
rotation angles (θF) are small in nonmag-
netic media (smaller than 0.01�/T even) for
plasmon-assisted metallic structures in the
optical regime3).
Recently, a single graphene sheet has been

found to show extremely large Faraday an-
gles. At frequencies smaller than∼0.1 THz, θF
is virtually frequency-independent andcanbe
of the order of tens of degrees for B∼ 1 T.4 At
larger frequencies (∼1 THz), a continuous
graphene sheet presents very large Faraday
rotation (θF ≈ 6� at B = 7 T) originating from
the excitation of the cyclotron resonance.5

These remarkable findings have prompted
thesearch formechanismscapableofextending

the range at which graphene structures
present substantial θF to larger frequencies
and/or smaller magnetic fields. One possi-
bility is to introduce small periodic gaps in
the graphene sheet, thus creating a meta-
surface with an enhanced effective capaci-
tance and, correspondingly, a blue-shifting
in the Faraday rotation maximum (θF of the
order of a few degrees at∼5 THz for B = 7 T).6

A different mechanism is to involve the
resonant excitation of magnetoplasmon
modes in the graphene sheet. This mechan-
ismhas been invoked to explain the Faraday
rotation experimentally detected in gra-
phene grown on SiC, where plasmons can
be excited due to the breaking of transla-
tional symmetry induced by substrate
defects.7 In that work, however, coherent
excitation of plasmons is hampered by the
existing distribution of sizes and shapes of
the homogeneous graphene regions.
In this paper, we will explore the possibi-

lity of using disconnected geometries sup-
porting graphene surface plasmons, that
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ABSTRACT A single graphene sheet, when subjected to a perpendicular static

magnetic field, provides a Faraday rotation that, per atomic layer, greatly

surpasses that of any other known material. In continuous graphene, Faraday

rotation originates from the cyclotron resonance of massless carriers, which allows

dynamical tuning through either external electrostatic or magneto-static setting.

Furthermore, the rotation direction can be controlled by changing the sign of the

carriers in graphene, which can be done by means of an external electric field.

However, despite these tuning possibilities, the requirement of large magnetic fields hinders the application of the Faraday effect in real devices, especially

for frequencies higher than a few terahertz. In this work we demonstrate that large Faraday rotation can be achieved in arrays of graphene microribbons,

through the excitation of the magnetoplasmons of individual ribbons, at larger frequencies than those dictated by the cyclotron resonance. In this way, for

a given magnetic field and chemical potential, structuring graphene periodically can produce large Faraday rotation at larger frequencies than what would

occur in a continuous graphene sheet. Alternatively, at a given frequency, graphene ribbons produce large Faraday rotation at much smaller magnetic

fields than in continuous graphene.
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can be resonantly excited by incident radiation, in
order to enhance the Faraday rotation. In common
with the metasurfaces involving physical gaps in gra-
phene, we will considered periodic arrays, but our
proposal relies on the plasmonic resonances of the
individual (disconnected) basic structures composing
the periodic system.
At zero magnetic field, coupling to graphene plas-

mons strongly enhances the interaction between gra-
phene and incident radiation.8�15 In the presence of a
static magnetic field, applied perpendicularly to gra-
phene, plasmons and cyclotron excitations hybridize,
leading to the formation of graphene magnetoplas-
mons (GMP).16�20 These GMP modes are known to
significantly modify the magneto-optical response of
graphene structures.21�24

Specifically, here we show that graphene ribbons
can be used both to enlarge the frequency range and
to reduce the magnetic field at which graphene struc-
tures present large Faraday rotation. Graphene plas-
monic gratings, which combine giant Faraday rotation
in graphene with strong coupling between radiation
and graphene plasmons, provide the exciting prospect
of dynamically tunable ultrathin devices in both THz
and infrared regimes, by employing solely the magne-
to-optical properties of graphene. Additionally, the
mechanism of excitation of resonances of individual
ribbons could be further enhanced through the com-
bination with other mechanisms, for instance by de-
signing the capacitive inter-ribbon coupling (in the
vein of the metasurface proposed in6), or through the
combination with other materials (as the dielectric thin
films used in plasmonic metal gratings to enhance the
interaction time between light and plasmons25).

RESULTS AND DISCUSSION

In this paper, for proof of principle, we consider a
periodic array of graphene ribbons (with width w and
period L), illuminated at normal incidence by a mono-
chromatic plane wave. A static magnetic field B is
applied perpendicularly to the ribbons (see Figure 1
for a schemeof the considered geometry). The incident
electric field is chosen to lie perpendicularly to the axis
of the ribbon (p-polarization). In this way, any deviation
in the direction of the transmitted electric field is due to
the effect in the magnetic field, and not to a “filtering”
effect arising from the different transmittances for s- and
p-polarizedwaves, whichwould occur even at zero field.26

Graphene is represented by its semiclassical con-
ductivity tensor:27

σxx ¼ σyy ¼ e2jμcj
p2π

i(ωþ i=τ)

(ωþi=τ)2�ω2
c

σxy ¼ � σyx ¼ e2jμcj
p2π

ωc

(ωþi=τ)2�ω2
c

(1)

where μc is a chemical potential, τ is a relaxation time,
andωc = eBvF

2/|μc| is the cyclotron frequency. Here vF is

the Fermi velocity of the Dirac fermions in graphene
(vF = 9.5 � 105 m/s). We take a representative value for
the chemical potential μc = 0.2 eV. Our main conclusions
are independent of this choice, but it must be noticed
that the semiclassical expression for the conductivity
incorporates only intraband transitions, i.e., it is thus
valid for frequencies pω < 2|μc|.

27�29 The spectral
range we study in this paper is consistent with this
restriction. We will consider two values for the relaxa-
tion time τ = 0.1 ps (corresponding to the mobility of
about 4500 cm2 V�1 s�1), which is typical for experi-
mentally studied graphene ribbons, and τ = 4.4 ps
(corresponding to themobility of 200 000 cm2 V�1 s�1),
which is expected to be achievable for suspended
graphene if intrinsic disorder is eliminated.30�32

To find the scattering coefficients, we expand the
total electromagnetic field in the conventional form of
the Fourier-Floquet plane waves expansion, in both
upper and lower semispaces. Matching appropriately
the fields at the ribbon array yields an infinite set of
equations for the amplitudes of these waves. Details of
the method can be found in the Supporting Informa-
tion. The numerical calculation of the amplitudes from
the truncated system converges slowly (and what is
worse, nonuniformly) with the number of diffraction
orders considered. We have validated that results
obtained by this method have converged by compar-
ing them with those obtained by finite element
calculations,33 (which are more time-consuming), per-
formed regularly for representative sets of parameters.
When only the zero-order diffraction mode is radiative
(i.e, when L < λ, which is the situation analyzed in this
paper), the Faraday rotation angle can be computed
from the amplitudes of the s and p transmitted plane
waves, t0xx and t0xy, respectively, as:

34

θF ¼ 1
2

arg
t0xx � it0xy
t0xx þ it0xy

(2)

For zero magnetic field, the dependence of trans-
mission, reflection, and absorption spectra of such

Figure 1. Schematic representation of the studied system: a
plane monochromatic wave is normally incident onto the
array of graphene ribbons, in the presence of a static
perpendicular magnetic field B. θF is the Faraday rotation
angle.
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structures on both period and width of the ribbons
has been extensively studied theoretically and experi-
mentally.8,11,13,35,36 In particular, it was found that the
main resonance in the scattering coefficients is asso-
ciated with the excitation of a hybridized mode, which
is a linear combination of the two edge modes of the
ribbon.11,37,38 Additionally, there also exists an infinite
set of weaker resonances which emerge due to cou-
pling to waveguide-like graphene plasmons. As wewill
discuss below, in a perpendicular magnetic field the
ribbon plasmon modes transform into magnetoplas-
mon excitations, but the number of modes and their
field structure remains the same.
In what follows we study the magnetoresponse of

two structures, representative of those used in recent
experiments (performed at B= 0):8 array “A”, definedby
ribbon width w = 2 μm and period L = 4 μm and array
“B”, with w = 0.5 μm and L = 1 μm.
Let us first analyze the absorption of radiation by the

free-standing ribbon arrays (ε1 = ε2 = 1). In Figure 2a,b,
we show the absorption for a continuous graphene
sheet and for the arrays considered for the case B = 4 T.

This figure also renders the absorption cross section of
the corresponding single free-standing graphene rib-
bons showing that, for the geometrical parameters
considered, the absorption resonances are essentially
due to the GMPs of the individual ribbons; the inter-
ribbon coupling results only in a slight red-shifting of
the main absorption line. In the considered frequency
range, where the conductivity is given by a Drude term,
the ribbon GMP modes are similar to those studied in
stripes of two-dimensional electron gases arising in
GaAs heterostructures.17,37�44 Those studies showed
that the frequencies of the magnetoplasmon modes
ωn(B) are given by a simple expression

ωn(B) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

n þω2
c

q
(3)

where ωn is the set of plasmon frequencies in an
isolated ribbon at zero magnetic field. Each eigenfre-
quency ωn scales with the ribbon width as (n/w)1/2,
where n is a number of the mode, n = 1, 2, 3, ...8,38 (only
the odd orders are excited under the normal incidence).
The dependence of the absorption spectra with DC

Figure 2. (a and b) Absorption spectra of two different ribbon arrays (continuous lines), with geometrical parameters
specified in each panel, and a uniform graphene sheet (dashed curves), in a magnetic field B = 4 T. Two different relaxation
times have been considered: τ = 4.4 ps (orange curves) and τ = 0.1 ps (black curves). Green dot-dashed curves show the
absorption cross section for a single ribbon, for τ = 0.1 ps. The structure of Ez at the first three resonances indicated with “1”,
“2”, “3” is shown in the inset of (a). (c and d) The absorption of the arrays A and B (geometrical parameters specified in panels
(a) and (b), respectively) as a function of both frequency andmagnetic field B. White dashed lines indicate the position of the
cyclotron resonance (CR) in a uniform graphene sheet. Orange solid lines indicate the position of the “cross sections” of this
contour plot shown in panels a and b.
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magnetic field for both arrays is rendered in Figure 2c,d,
reflecting clearly the evolution of the GMP frequencies.
Figure 3a,b shows the spectra for the Faraday rota-

tion angle for the two ribbon arrays considered, and for
different DCmagnetic fields (solid lines). For comparison,
in the same panels we present the Faraday rotation
angle for a continuous graphene sheet (dashed lines).
Asmentioned above, in continuous graphene themain
resonance feature is associated to the cyclotron reso-
nance. Therefore, giant Faraday rotation is restricted to
rather low frequencies, less than 10 THz, even at high
magnetic fields (see white dashed lines in lower panels
in Figure 2). As seen from Figure 3, graphene ribbon
arrays, despite being a diluted one-atom thickmaterial,
still present values of θF of the order of a few degrees.
Moreover, the frequency at which maximum θF occurs
in ribbon arrays is strongly blue-shifted with respect to
the one in a continuous graphene sheet. This differ-
ence is especially significant for low magnetic fields
(less than a few Tesla). In the ribbon array, the max-
imum of Faraday rotation occurs at the resonance

excitation of GMPs, which is determined by both
ribbon width and magnetic field. At high magnetic
fields, for which the fundamental GMP mode ap-
proaches the cyclotron resonance, the ribbon arrays
have no obvious advantage over continuous gra-
phene, even producing a weaker Faraday effect.
Figure 3c,d shows the corresponding transmittance

spectra. Notice that minimum transmittance occurs
approximately at the spectral position where θF changes
sign. Importantly, the transmittance at maximum θF is
∼85�90%, which allows increasing of the Faraday rota-
tion by stacking vertically several layers of ribbon arrays,
yet maintaining an appreciable transmitted field.
Associated to the Faraday rotation in graphene

ribbons, there is a change in the polarization of the
transmitted light. This is illustrated in Figure 4, which
renders the ellipticity spectra of transmitted radiation
for the two considered graphene ribbons, and for
continuous graphene.
When the lattice parameter is much smaller than

the free-space wavelength, we can use a metamaterial

Figure 3. The results for ribbon arrays (solid curves) and continuous graphene (dashed curves) for relaxation time τ = 0.1 ps.
Panels to the left correspond to array “A” (w = 2 μm, L = 4 μm)while right panels are for array “B” (w = 0.5 μm, L = 1 μm). Upper
panels: Faraday rotation angle at various magnetic fields. Middle panels: Zeroth-order transmission |t0|

2 = |t0xx|
2 þ |t0xy|

2.
Lower panels: The real part of the nondiagonal component of the effective conductivity, Reσ~xy (solid curves), and Reσxy
(dashed curves).
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approach and, for the computation of the scattering
coefficients, represent the graphene ribbon array as a
continuous monolayer with an effective conductivity
tensor σ~(B). The two independent components of the
effective conductivity tensor, namely, σ~xx and σ~xy, can
be uniquely derived from the zero-order transmission
coefficients t0xx and t0xy. In particular, for the free-
standing ribbons array, we obtain (see Supporting
Information for the derivation):

σ~xx ¼ c

4π
t0xx

t20xx þ t20xy
� 1

" #

σ~xy ¼ c

4π
t0xy

t20xx þ t20xy

(4)

The lower panels of Figure 3 show the frequency
dependence of both Reσ~xy (for the two considered
arrays) and Reσxy (continuous graphene). Notice that
the relation between the Faraday angle and nondi-
agonal component of the conductivity tensor, valid for
low relaxation times, θF = 4πc�1Reσxy can be still
applied in the case of ribbon arrays (in which case
θF = 4πc�1Reσ~xy), as can be seen by comparing
Figure 3e,f with 3a,b.
To better illustrate the magneto-optical response of

the ribbon arrays, we define the effective magnetic
field, Beff, such that the spectral position of the max-
imum Faraday angle is the same for a continuous

graphene sheet under the presence of Beff and for
the ribbon array under the actual B (with all other
parameters like chemical potential μc, mobility, etc.,

remaining the same). Figure 5a renders the depen-
dence of the computed Beff with B, for different arrays
of ribbons, showing clearly that submicrometer gra-
phene ribbons produce maxima in the Faraday rota-
tion at frequencies that would only be achievable in a
continuous graphene sheet at much larger magnetic
fields. If these large magnetic field are achievable, a
continuous sheet would produce a larger Faraday
angle. This is illustrated in Figure 5c, which shows the
ratio between θF(Beff) in a graphene sheet and θF(B) in
the ribbon, R(B) = θF

ribbon(B)/θF
sheet(Beff), evaluated at

the resonant frequency. This figure shows that, for
low relaxation times, the decrease in magnetic field
needed to obtain high Faraday angles in ribbons, with
respect to the situation in a continuous sheet, is
accompanied by a decrease in the maximum Faraday
angle (R < 1). As the magnetic field increases, so does
R, and when the magnetic field is high enough (so that
the magnetoplasmon frequency in ribbons tends to
the cyclotron frequency) R(B) is limited by the filling
fraction w/L.
Another way to obtain Faraday rotation at higher

frequencies in a continuous graphene sheet is by
reducing the chemical potential μc. To compare the
response of 2D graphene and the ribbon array, we
define an effective chemical potential μc

eff(B) such that
the spectral position of maximum θF is the same for a
continuous graphene sheet at μc

eff(B) and for the ribbon
array under the actual μc (with all other parameters like
B, mobility, etc., remaining the same). Figure 5b renders
the μc

eff(B) for several ribbons arrays, for μc = 0.2 eV.
Notice, however, that the strategy of increasing the
frequency of resonant Faraday rotation in a continuous
sheet by decreasing the chemical potential is limited
by the condition pωc < 2 μc

eff. In Figure 5c, this is
reflected in the fact that the different curves have
end-points at the lower chemical potentials that fulfill
the previous condition. Notice also that, as shown in
Figure 5d, ribbon arrays can provide, at a given mag-
netic field and a given frequency, a substantially larger
Faraday rotation than a continuous graphene sheet.
This occurs at magnetic fields such that μc

eff , μc, i.e.,
when the resonance is magnetoplasmonic, rather than
cyclotronic, in character.
Up to nowwe have considered a value for the carrier

mobility in graphene that is routinely produced nowa-
days. However, in view of the recent advances in
producing high-quality graphene samples, it is valu-
able to know whether there are physical limits to what
can be achievable. A well-known example of these
limits is that the maximum possible absorption by a
free-standing infinitely thin sheet is 50%.45 Concerning
the change in polarization, we find that in a free-
standing infinitely thin sheet, characterized by a local
conductivity, the modulus of each of the zero-order
cross-polarization amplitudes has a maximum value of
1/2 (see Supporting Information). This is,

Figure 4. Frequency dependence of the ratio between the
minor andmajor semiaxis of the polarization of transmitted
radiation through both continuous graphene (dashed lines)
and arrays of graphene ribbons (continuous lines). The
considered geometrical parameters and scattering time
are as in Figure 3.
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jtspj2max ¼ jtpsj2max ¼ jrspj2max ¼ jrpsj2max ¼ 1
4

ð5Þ

By structuring graphene, we cannot increase this limit-
ing value. However, we can largely improve the reso-
nance q-factor (the GMP resonance is less absorptive,
see Figure 2a,b). This has implications for the Faraday
rotation. In a continuous translational-invariant sheet,
it can be shown (see Supporting Information) that,
at not very low magnetic field and frequencies, the
maximal Faraday angle is |θF|max = π/4 which, of
course, is already an impressive result, even more so
for a one-atom-thick layer. Remarkably, Faraday rota-
tion on graphene ribbon arrays can exceed this value.
As was previously shown,11 the transmission coeffi-
cient t0xx can be very low. If we set t0xx f 0 in eq 2, we
immediately obtain |θF| f π/2. These properties are
illustrated in Figure 6, which shows the computed
transmittance and Faraday angle, for both arrays A
and B, for the case τ = 4.4 ps. This figure shows that the
Faraday angle strongly depends on scattering time and
that in ribbons it may even exceed that of a continuous
graphene sheet (and, as stated above, present max-
imum θF at larger frequencies).
In all the previous calculations, we have considered

free-standing graphene (ε1 = ε2 = 1) because the
fundamental physicswewere discussing (the influence
of excitation of GSP on the Faraday rotation) was
already present in this simple configuration. Never-
theless, in practice, graphene is usually produced on a
substrate. One consequence of this is that carrier

mobility is reduced, due to scattering with phonons
and charged impurities. Additionally, although the
presence of a substrate does not significantly affect
the polarization rotation in a continuous graphene
sheet, this may not be the case for graphene ribbons,

Figure 5. Effective magnetic field (a) and effective chemical potential (b), defined as those at which a continuous graphene
sheet would produce maximum giant Faraday rotation at the same frequency as the ribbon array at a given magnetic field B
(with all other parameters unchanged). The bottom panels render the ratio between themaximal Faraday angle of graphene
ribbon arrays and that of the continuous sheet at the corresponding effective parameters (panel c for Beff and panel d for μc

eff).

Figure 6. The results for ribbon arrays (solid curves) and
continuous graphene (dashed curves) for the ultrahigh
relaxation time τ = 4.4 ps: (a) Faraday rotation at various
magnetic fields; (b) zeroth-order transmission.
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since plasmon excitations are very sensitive to the
surrounding medium. The influence of a substrate

on the GSP-enhanced Faraday rotation of graphene
ribbons is exemplary illustrated in Figure 7, for one of
the ribbon arrays considered in this work placed on a
semi infinite substrate characterized by a nondisper-
sive dielectric permittivity ε2 = 4. As the figure shows,
the blue shifts of the maximum in the Faraday angle
occurring when graphene is patterned are still present,
although they are reduced by the presence of the
dielectric substrate (as can be seen by the comparison
with Figure 3b).

CONCLUSION

We have shown that, for a given magnetic field and
chemical potential, structuring graphene periodically
can provide large Faraday rotation (more than 1�) at
larger frequencies thanwhatwouldoccur in a continuous
graphene sheet. Alternatively, at a given frequency,
graphene ribbons produce large Faraday rotation at
much smaller magnetic fields than those in continuous
graphene. This is produced by the resonant coupling of
radiation to the ribbon magnetoplasmons. The possi-
bility to control the graphene magnetoplasmon fre-
quency throughbothgeometry andmagneticfield, com-
bined with the possibility to modify the carrier density
by an external gate voltage, holds an exciting promise
for designing dynamically tunable devices employing
solely the magneto-optical properties of graphene.

METHODS
In this paper, we have used a standard Fourier-Floquet plane

wave expansion method. We represent the fields in the upper
and lower dielectric half-spaces in the form of an infinite sum of
plane waves. The fields are then matched at the interface
through the boundary conditions, which present the continuity
of the parallel components of the electric fields and disconti-
nuity of the parallel components of the magnetic fields due to
the presence of the graphene monolayer. The resulting infinite
system of equations for the amplitudes of the plane waves is
truncated and solved numerically; the truncation is controlled
by the convergency of the solution. All the calculations have
also been verified by finite elements methods using Comsol
software.
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